skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Raikman, R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We report a gravitational-wave parameter estimation algorithm,AMPLFI, based on likelihood-free inference using normalizing flows. The focus ofAMPLFIis to perform real-time parameter estimation for candidates detected by machine-learning based compact binary coalescence search,Aframe. We present details of our algorithm and optimizations done related to data-loading and pre-processing on accelerated hardware. We train our model using binary black-hole (BBH) simulations on real LIGO-Virgo detector noise. Our model has 6 million trainable parameters with training times 24 h. Based on online deployment on a mock data stream of LIGO-Virgo data,Aframe+AMPLFIis able to pick up BBH candidates and infer parameters for real-time alerts from data acquisition with a net latency of 6 s. 
    more » « less